Skip to content

Single variable derivatives

Formal definition

Let \(f(x)\) be a function with a single variable \(x\), then the formal definition of the derivative is:

\[ \dfrac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \rightarrow 0} \dfrac{f(x+h) - f(x)}{h}. \]

Standard derivative table

This table contains the derivatives of the most common functions:

\(f(x)\) \(f'(x)\)
\(k\) \(0\)
\(x\) \(1\)
\(x^k\) \(kx^{k-1}\)
\(\cos x\) \(-\sin x\)
\(\sin x\) \(\cos x\)
\(\tan x\) \(\sec^2 x\)
\(\cot x\) \(-\csc^2 x\)
\(\sec x\) \(\sec x \tan x\)
\(\csc x\) \(-\csc x \cot x\)
\(\ln x\) \(\frac{1}{x}\)
\(e^x\) \(e^x\)
\(k^x\) \((\ln k)k^x\)