Single variable derivatives
Formal definition
Let \(f(x)\) be a function with a single variable \(x\), then the formal definition of the derivative is:
\[
\dfrac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \rightarrow 0} \dfrac{f(x+h) - f(x)}{h}.
\]
Standard derivative table
This table contains the derivatives of the most common functions:
| \(f(x)\) | \(f'(x)\) |
|---|---|
| \(k\) | \(0\) |
| \(x\) | \(1\) |
| \(x^k\) | \(kx^{k-1}\) |
| \(\cos x\) | \(-\sin x\) |
| \(\sin x\) | \(\cos x\) |
| \(\tan x\) | \(\sec^2 x\) |
| \(\cot x\) | \(-\csc^2 x\) |
| \(\sec x\) | \(\sec x \tan x\) |
| \(\csc x\) | \(-\csc x \cot x\) |
| \(\ln x\) | \(\frac{1}{x}\) |
| \(e^x\) | \(e^x\) |
| \(k^x\) | \((\ln k)k^x\) |