Single variable derivatives
Formal definition
Let \(f(x)\) be a function with a single variable \(x\), then the formal definition of the derivative is:
\[
\dfrac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \rightarrow 0} \dfrac{f(x+h) - f(x)}{h}.
\]
Standard derivative table
This table contains the derivatives of the most common functions:
\(f(x)\) | \(f'(x)\) |
---|---|
\(k\) | \(0\) |
\(x\) | \(1\) |
\(x^k\) | \(kx^{k-1}\) |
\(\cos x\) | \(-\sin x\) |
\(\sin x\) | \(\cos x\) |
\(\tan x\) | \(\sec^2 x\) |
\(\cot x\) | \(-\csc^2 x\) |
\(\sec x\) | \(\sec x \tan x\) |
\(\csc x\) | \(-\csc x \cot x\) |
\(\ln x\) | \(\frac{1}{x}\) |
\(e^x\) | \(e^x\) |
\(k^x\) | \((\ln k)k^x\) |